skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tee, Wei_Leong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding when and how reionization happened is crucial for studying the early structure formation and the properties of the first galaxies in the Universe. Atz> 5.5, the observed intergalactic medium (IGM) optical depth shows a significant scatter, indicating an inhomogeneous reionization process. However, the nature of the inhomogeneous reionization remains debated. A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE) is a JWST Cycle 1 program that has spectroscopically identified >400 [Oiii] emitters in 25 quasar fields atz> 6.5. Combined with deep ground-based optical spectroscopy of ASPIRE quasars, the ASPIRE program provides the current largest sample for IGM-galaxy connection studies during cosmic reionization. We present the first results of IGM effective optical depth measurements around [Oiii] emitters using 14 ASPIRE quasar fields. We find the IGM transmission is tightly related to reionization era galaxies to the extent that a significant excess of Lyαtransmission exists around [Oiii] emitters. We measure the stacked IGM effective optical depth of IGM patches associated with [Oiii] emitters and find they reach the same IGM effective optical depth at leastdz∼ 0.1 ahead of those IGM patches where no [Oiii] emitters are detected, supporting earlier reionization around [Oiii] emitters. Our results indicate an enhancement in IGM Lyαtransmission around [Oiii] emitters at scales beyond 25h−1cMpc, consistent with the predicted topology of reionization from fluctuating UV background models. 
    more » « less
  2. Abstract We present the final data from the Sloan Digital Sky Survey (SDSS) Reverberation Mapping (RM) project, a precursor to the SDSS-V Black Hole Mapper RM program. This data set includes 11 yr photometric and 7 yr spectroscopic light curves for 849 broad-line quasars over a redshift range of 0.1 <z< 4.5 and a luminosity range ofLbol= 1044−47.5erg s−1, along with spectral and variability measurements. We report 23, 81, 125, and 110 RM lags (relative to optical continuum variability) for broad Hα, Hβ, Mgii, and Civusing the SDSS-RM sample, spanning much of the luminosity and redshift ranges of the sample. Using 30 low-redshift RM active galactic nuclei with dynamical-modeling black hole masses, we derive a new estimate of the average virial factor of log f = 0.62 ± 0.07 for the line dispersion measured from the rms spectrum. The intrinsic scatter of individual virial factors is 0.31 ± 0.07 dex, indicating a factor of 2 systematic uncertainty in RM black hole masses. Our lag measurements reveal significantR–Lrelations for Hβand Mgiiat high redshift, consistent with the latest measurements based on heterogeneous samples. While we are unable to robustly constrain the slope of theR–Lrelation for Civgiven the limited dynamic range in luminosity, we found substantially larger scatter in Civlags at fixedL1350. Using the SDSS-RM lag sample, we derive improved single-epoch (SE) mass recipes for Hβ, Mgii, and Civ, which are consistent with their respective RM masses as well as between the SE recipes from two different lines, over the luminosity range probed by our sample. The new Hβand Mgiirecipes are approximately unbiased estimators at given RM masses, but there are systematic biases in the Civrecipe. The intrinsic scatter of SE masses around RM masses is ∼0.45 dex for Hβand Mgii, increasing to ∼0.58 dex for Civ. 
    more » « less